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Abstract. Inequalities derived by Holley are applied to the lattice gas model, king model 
and higher order spin systems as well as to continuum analogues of spin-1 lattice systems. As 
a result, new inequalities for the case of non-ferromagnetic interactions are proved and a 
direct proof of a generalization of known magnetization properties is presented. 

1. Introduction 

Among the rigorous methods of examining models which exhibit phase transitions, an 
important role is played by the families of inequalities for correlation functions. GKS, 
GHS and FKG inequalities are used most frequently (Griffiths 1967, 1969, Kelly and 
Sherman 1968, Griffiths et a1 1970, Fortuin eta1 1971). It follows from GKS and FKG 
inequalities that mean values of some observables are directly related to interaction 
constants. This very important property is often used in various proofs. However, apart 
from in some specific cases, neither GKS nor FKG inequalities can tell us the net effect 
upon mean values when there is a simultaneous change of two groups of interaction 
constants in opposite directions. Also, they do not generally allow consideration of 
nonferromagnetic interactions. Holley (1974) proved a theorem which gives sufficient 
conditions for two probability measures (in an inequality form) when the mean value of 
some increasing observable is greater with respect to one of them than the other. The 
theorem naturally anticipates the net effect upon a mean value (for an increasing 
observable) of an increase of one group of interactions with a decrease of a second 
group. It also allows consideration of the case of non-ferromagnetic interactions. This 
paper presents results obtained by applying Holley's theorem to: (i) the lattice gas 
model; (ii) the king model; and (iii) higher order spin systems and continuum analogues 
of the spin-1 systems. Our main results are new inequalities for the non-ferromagnetic 
case and a direct proof of a generalization of known magnetization properties in the 
spin-; Ising model. 

2. Inequalities for the lattice gas model, king model and higher order spin systems 

Let us recall for completeness the result of Holley. 

Theorem (Holley) 

Let r be a finite distributive lattice, x ,  y E r, and let f be a real, increasing function on r 
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(i.e. if x 3 y then f ( x )  3 f ( y ) )  which we will call observable. Also let v 1  and v2 be two 
strictly positive probability measures on r. If 

v1(x V Y b 2 ( X  . Y ) 3 v l ( X ) v 2 ( Y )  (1) 
for all x ,  y E r, where x v y ( x  A y )  denotes a least upper bound (greatest lower bound), 
then 

Further we will consider only measures which correspond to the canonical ensembles of 
the systems under consideration. Hence 

exp(Aa,i(x)) 
L r exp(Aa,i ( X I )  

va,i ( x  1 = 

where A,,i(x) = - p X a , i ( x ) ,  X,,, is the Hamiltonian, CY = 1 , 2 , 3  denotes the model under 
consideration and i = 1,2 denotes a possible choice of interaction constants in the 
Hamiltonian. Because of the specifications of v- ,~,  equation (1) can be rewritten as 

Aa,l(x v Y>+ha,Z(X A Y ) ~ ~ * , l ( x ) + ~ a , 2 ( Y ) .  (1’) 

2.1. Lattice gas model 

Here, as with the finite distributive lattice I‘, we consider the set of subsets 
A, B, P, . . . of a finite set A, 

where 

Lemma 1.  The following conditions on cpi(P) are equivalent to (1): for any a E A, la I = 1 
and any A, B c A\a, such that A n B = 0, 

P c A  R cB 
(4) 

where ‘+’ denotes the symmetric difference of sets. 

Proof. First one proves that (1’) is equivalent to 

A a , l ( A  + B + a )  - A a , l ( A  +B) 3 Aa,2(A + a )  - A a , 2 ( A )  (5 )  
for any a E A, la1 = 1, A ,  B c A\a, A n B = 0 (for this proof, see appendix 1). Then 
one applies (3) to (5).  

Consider now the case of one- and two-body interactions, i.e. p i ( P )  = 0 if lPl> 2. In 

(6) 

for any a E A, A, B E A\a, A n B =D. Let f be an increasing observable throughout. 

this case (4) reduces to the following condition on interaction constants: 

cp1(a)-cpz(a)+ c c p l b  + b ) +  c (cp1(a +c)-cp2(a + C ) ) S O  
b e B  c s A  
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Corollary 1 .  Attractive interactions. 

If 

Corollary 2. Non -amactive interactions. 

For any a, c E A, a # c, cp(a + c )  = cpi(a + c )  are of unspecified signs. Then (f>l 3 
whenever 

cp1 ( a )  - 4 a )  + min (0 ,  C cp (a  + b)  b 0. 
B Z 0  b c B  

2.2. Ising model 

In this case the lattice r is the same as in §2.1. 

where 

UP = J l  g a  and ua = 2na - 1 .  
a c P  

Lemma 2. The following conditions on Ji(P) are equivalent to ( 1 ) :  for any a E A, and 
any B C A  c A, Bc A\a 

The proof is given in appendix 2. 

Now let us restrict ourselves to the special case when at most pair interactions are 
present. Then (10) reduces to 

J l ( a ) - J 2 ( ~ ) +  C ( J ~ ( c + u ) - J ~ ( c + u ) ) u ~ ( A ) + ~  J ~ ( u  + b ) a O  (1 1 )  
c Z a  b c B  

fo ranyaEA,  B c A c A , a & B .  

Corollary 1 .  Ferromagnetic interactions. 

Assume that for any a, b E A and a # b, Jl(a + b )  b 0. Fulfillment of the inequality 

J l (a )  -J&> 3 C Pl(c + a )  +all 
c # a  

is sufficient for the inequality (f)l b (f)* to hold. 
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Corollary 2. Non - ferromagnetic interactions. 

Let any a,  b E A, a # b, J ( a  + b )  = J;.(a + b )  have arbitrary signs. Then ( f ) ~  a ( f ) 2  
whenever 

J l (a)-J2(a)+min (0,2 1 J ( a + b ) ) S O .  
B#0 b e B  

2.3. Higher order spin systems 

First, let us define the underlying lattice r. Its elements form the set of all N- 
dimensional vectors x, y ,  whose components can take on the values -p ,  - p  + 2, . . . , 
p - 2, p ,  where p denotes a positive integer. We define spins Si, i = 1 ,2 ,  . . . , N as the 
following functions on r : S i ( x )  is equal to the value of the ith component of x. With the 
help of the spins Si we introduce the partial order that x a y if and only if S i ( x )  a Si ( y )  
for all i. For the least upper bound x v y :  

Si(x v ~ ) = m a x [ S i ( x ) ,  S i (y ) l  

while for the greatest lower bound x A y : 

si(x A Y )  = min[S,(x), Si(y) l  

for all i, 

for all i .  

The proof that defined I' above in the distributive lattice is given in Lebowitz and 
Monroe (1972). The models under consideration are specified by 

A 3 . K  = i ( ~ K ( i , j ) s i ( X ) s , ( x ) + ~ K ( i , j ) s ~ ( x ) s ~ ( x ) )  + c ( ~ K ( i ) s i ( x ) + c z K ( i ) s ? ( x ) )  

where &i, j )  =$(j, i )  and TK ( i ,  j )  = TK(j ,  i). 

N 
(14) 

i < j  i = 1  

Lemma 3. The following conditions upon interaction constants are sufficient for the 
fulfillment of the inequality ( 1 ) :  

2 ( A i 9 j ) - 4 ( p  - 1)21r(i,j))) +Hl( i ) -HzW--2(p  - 1)Ipl(i) -p2(i)laO ( 1 5 )  

Hd i ) - -H2Wa2(p-  Ulp1(i)--pZ(i)l (16) 

and 

for any i, j = 1, . . . , N, where&i,j) = G(i, j ) ,  y(i, j )  = 

p( i )  = f i ( i ) / ( N -  1 ) .  
j ) ,  H ( i )  = f i ( i ) / ( N -  l ) ,  

Proof. A3,K can be rewritten in the form of a double sum: 

A 3 , K  ( x )  = C C {GK(i, / > s i ( x ) s j ( x )  +t+K(i, j)s?(x)S)?x) + [ f i K ( i ) / ( N -  1)1s i (x)  
i # j  

+ [Cir ( M N -  1)1S%)) 

and the inequality (1) will be established if it holds for each term in the sum. First assume 
that sites i and j are ordered in the states x and y ,  i.e. Si(x) a S i ( y )  and Sj(x)  a S j ( y )  or 
S i ( x ) S S i ( y )  and Sj (X)QSj (Y ) .  Then we get $ l ( i ,  j ) = f z ( i , j )  and y l ( i , j ) = y 2 ( i , j )  and 
Hl(i)  -HZ(i) a 2(p - 1)Ip1(i) -p2(i)( .  In the second step, assume that the sites i and j 
are unordered in the states x and y .  Because of the symmetry between i and j it is 
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enough to consider only one choice, for example Si(x) <Si(y) and Sj(x)>Sj(y). This 
leads to the condition 

2U(i,j)-4@- l)21~(i,j)ll+Hl(i)-H2(i)-2@ - 1 ) 1 ~ 1 ( i ) - ~ ~ ( i ) 1 3 0 .  

Remark. Note that in the case p = 1 (15) and (16) reduce to the corresponding king 
model condition and when pI(i) = p 2 ( i )  we get the result proved by Lebowitz and 
Monroe (1972). 

Finally let us consider continuum models of particles of two species with the 
following fugacity 

z E ( r )  = exp P(  P K  (r)a 2 + H K  ( r )a)  

@.$‘(lr - r’l) = -9, (Ir - r’l)aa’ - ’y, (Ir - r’l)a2a’2. 

(17) 

where a = -2, 2, r E V c  R”,  K = 1, 2 and the following pair interactions 

(18) 

Lebowitz and Monroe (1972) have shown that models defined by (17) and (18) can be 
thought of as zero lattice spacing limits, 6 + 0, of the models defined by (14) for p = 2. 
The corresponding Hamiltonians are related by the following equations: 

$(i,j) =f(lri  -rjl), ~ ( i , j )  = Y(lri -rjl)> 

H ( i )  = H ( r i ) ,  p ( i )  = k(ri)+p-’ In 6. 
Let Sc(X; a, w )  denotes the function equal to the number of particles of species a which 
are in an open set w c V in configuration X. Also let sc(x ;  a, w )  be defined by the 
equation s t ( x ;  a, U )  = Ziao S ( S i ( x ) ,  a), where S (  ) denotes the Kronecker function. 
The above remark and lemma 3 lead to the following corollary. 

Corollary 1 .  

Let f be a real continuous function and let the observable f [ s z ( x ;  a, w ) ]  be increasing. 
The conditions 

where ( - 
ensemble. 

>,,, stands for the mean value with respect to the continuum system grand 

3. Finalremarks 

Some explanations in connection with our statements in 0 1 are necessary. First, in fact, 
Lebowitz (1972) succeeded in deriving the net effect upon magnetization of a decrease 
of pair interactions in conjunction with a suitable increase of magnetic field. This has 
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been done by combining GKS and FKG inequalities. Holley’s theorem seems to be a 
natural starting point for derivation of such inequalities as it allows direct proofs to be 
given. For example, consider a spin-; Ising model with pair interactions 

A2(A)= 2 J(P)gF‘(A)= J(a+b)ga,b(A)+ 2 h(a)ua(A). 
P c A  a,b O € A  
IPI==2 a # b  

Let us now introduce some new notation. {J} denotes the set of all J(a + b )  and {h} the 
set of all h(a) ,  a, b E A, a # b, for any increasing observable 

Suppose that every pair interaction constant J(a + b )  has been diminished by the 
positive value SJ(u + b )  such that J(a + 6 )  - SJ(a + b )  0 and at the same time every 
h(a)  has been enlarged by Sh(a) = &A,b#a SJ(a + b ) .  The following inequality is an 
immediate consequence of corollary 1 of 0 2.2: 

(where Sh = &,GA,b+a SJ(a + b)).  For translationally invariant, stable interactions, after 
passing to the limit A +  CO, we get 

9 ( { J -  SJ}, h + Sh) 3 9 ( { J } ,  h )  (22’) 

(23’) 

or 

$({.I}, h + Sh) 3 9 ( { J +  SI};$ 
where 9 ( { J } ,  h )  = limA+m 9,,({J}, h). Second, we would like to mention that Lebowitz 
(1971) derived inequalities for a specific antiferromagnetic model, starting from FKG 
inequalities and using a suitable transformation of spins. Some applications of the 
derived inequalities are in preparation. 
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Appendix 1. The proof of the equivalence between (1‘) and (5) 

First we show that (5) follows from (1’). (1‘) reads: for any two subsets R, S, of A 

Aa,l(R uS)+Aa , z (R  nS)aAa , l (R)+Aa ,2 (S) .  

But any R, S c A can be represented by three disjoint sets A = R n S,  B = R \A, 
C =  S\A. (1’) is equivalent to 

&,I(A +B+C)-A~,I(A +B)aAa,z(A +C)-Aa,z(A) (A. 1) 
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for any A, B, Cc A which are pairwise disjoint. Taking C =  a we get (5 ) :  

A,,l(A + B + a )  -&,(A + B) 3 L,z(A + a )  -&&4). 

We now prove that ( 1 ' )  follows from ( 5 ) .  Any Cc A disjoint with A and B can be 
written as a, + a2 + , . . aN, a,, . . . , aN E A\(B U A). To prove the converse we apply 
(5) several times and obtain the following sequence of inequalities: 

A,,i(A + B +ai) -&,I(A + B) 3 L,2(A + a1) -L,2(A) 

A,,l(A + a1 +B +az)-A,,l(A + U ,  +B) 3 A,,2(A + ay+ ~ 2 )  -&;?(A + ~ 1 )  

A,,I(A + a1 + a2 +B +aJ-A,,l(A + a1 + +B) 
SA,,z(A + u ~ + u ~ + u ~ ) - A , , ~ ( A  + u I + u ~ )  

Appendix 2. The proof of lemma 2 

Because (4) is equivalent to (l), we prove that ( 1 0 )  is equivalent to (4). For this purpose 
we use the expression relating lattice gas interaction constants cpi (P) with king model 
interaction constants Ji(P):  

which follows from the requirement Al.; =A2,i. So for any A c A\(B + a )  and any 
R c Bc A\a, a E A; 

Q'nR +a =0 

= 2 .  2IR' 1 J1(Q'+R +a)aop(A\A) 
0' 

Q ' n R + a  =0 

(A.3) 
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and similarly we get 

(A.3) and (A.4) hold for any A c A\B. Changing the notation from A to h\A (4) can 
be rewritten in the following form: 

2IR’ C Jl (Q’+R + a ) c ~ , ( A ) -  J ~ ( Q + ~ ) ~ Q ( A ) > O  
R c B  Q’ Qda 

Q‘nR +a =0 

and this inequality should hold for any A 3 B. 

References 
Fortuin C M, Kastelyn P W and Ginibre J 1971 Commun. Math. Phys. 22 89 
Griffiths R B 1967 J.  Math. Phys. 8 478 

Griffiths R B, Hurst C A  and Sherman S 1970 J.  Math. Phys. 11 790 
Holley R 1974 Commun. Math. Phys. 36 227 
Kelly D G and Sherman S 1968 J. Math. Phys. 9 466 
Lebowitz J L 1971 Phys. LA?#. 36A 99 
- 1972 Phys. Rev. B 5 2538 
Lebowitz J L and Monroe J L 1972 Commun. Math. Phys. 28 301 

- 1969 1. Math. P h y ~ .  10 1559 


